Задача по данной теме относится к списку заданий, чтобы преодолеть минимальный порог, т е. минимальный тестовый балл для получения школьного аттестата




НазваниеЗадача по данной теме относится к списку заданий, чтобы преодолеть минимальный порог, т е. минимальный тестовый балл для получения школьного аттестата
Дата конвертации08.02.2013
Размер445 b.
ТипЗадача


Комбинаторика, статистика и теория вероятностей на итоговой аттестации выпускников 9 и 11 классов.

Казак Вадим Михайлович, учитель математики МАОУ СОШ №147.

ЕГЭ и ГИА

Аттестация за курс основной и средней школы проходит не по алгебре, а по математике.

В контрольно-измерительные материалы ЕГЭ по математике включены задания по алгебре, геометрии (планиметрия, стереометрия) и вероятности. В КИМ ГИА включены задания по алгебре, геометрии (планиметрия), статистике и теории вероятностей.

В 2011-2012 учебном году варианты КИМ ЕГЭ и ГИА по математике будут составляться с использованием Федерального банка тестовых заданий, опубликованного на сайтах: www.mathege.ru и www.mathgia.ru

Задания по теории вероятностей

Задача по данной теме относится к списку заданий, чтобы преодолеть минимальный порог, т.е. минимальный тестовый балл для получения школьного аттестата.

Задания направлены на математические ситуации в повседневной жизни. Такие задачи приходится решать на вокзалах, в банках, в магазинах, при вызове такси и во время ремонта квартиры. Задание является несложным, так как основано на использовании жизненных наблюдений и здравого смысла.

Правильное выполнение такого задания оценивается одним баллом.

Примерное время выполнения учащимся задания изменяется от 3 до 10 минут, с учетом уровня изучения математики в данном учебном заведении, знаний и умений самого выпускника и его психологической готовности к сдаче экзамена.

Учебно-методичиские пособия

  • Вероятность и статистика. 5-9 кл.:Пособие для обшеобразоват. учеб.заведений./ Е.А. Бунимович, В.А. Булычев. – М.: Дрофа, 2002-2010.

  • Алгебра: элементы статистики и теории вероятностей: учеб. пособие для учащихся 7-9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. – М.: Просвещение, 2011.

  • Элементы статистики и вероятность: учеб. пособие для 7-9 кл. обшеобразоват. Учреждений /М.В. Ткачева, Н.Е. Федорова. – М.: Просвещение, 2011.

  • ЕГЭ: 3000 задач с ответами по математике. Все задания группы В. Задания В10. /А.Л. Семенов и др.; под ред. А.Л. Семенова, И.В. Ященко. – М.: Издательство «Экзамен», 2012.

  • Государственная итоговая аттестация выпускников 9 классов в новой форме. Математика. 2012. Учебное пособие. / А.В. Семенов и др.; под ред. И.В. Ященко; МЦНМО. – М.: Интеллект-Центр, 2012. –с. 38-41.



Учебно-методичиские пособия

  • Математика. Базовый уровень ЕГЭ-2012 (В7-В14). Пособие для «чайников». / Е.Г. Коннова и др.; под ред. Ф.Ф. Лысенко, С.Ю. Кулабухова. – Ростов-на-Дону: Легион-М, 2011.

  • Математика. Подготовка к ЕГЭ-2012. Элементы теории вероятностей и статистика: учебно-методическое пособие. /Под ред. Ф.Ф. Лысенко, С.Ю. Кулабухова. – Ростов-на-Дону: Легион-М, 2011.

  • Теория вероятностей и статистика /Ю.Н. Тюрин, А.А. Макаров, И.Р. Высоцкий, И.В. Ященко. – М.: МЦНМО: ОАО «Московские учебники», 2008-2010.

  • Теория вероятностей и статистика: Методическое пособие для учителя / Ю.Н. Тюрин, А.А. Макаров, И.Р. Высоцкий, И.В. Ященко. – М.: МЦНМО: МИОО, 2011.

  • Теория вероятностей и статистика. Контрольные работы и тренировочные задачи. 7-8 классы. /В.В. Бородкина, И.Р. Высоцкий, П.И. Захаров, И.В. Ященко. – М.: МЦНМО, 2011.

  • Решение задач по статистике, комбинаторике и теории вероятностей. 7- 9 классы. /авт.-сост. В.Н. Студенецкая. – Волгоград: Учитель, 2006-2010.



Список тем по теории вероятностей:

  • Понятие о случайном опыте и случайном событии.

  • Частота случайного события.

  • Вероятности противоположных событий.

  • Независимые события.

  • Умножение вероятностей.

  • Достоверные и невозможные события.

  • Равновозможные события и подсчет их вероятности.

  • Классическое определение вероятности.



Выпускник должен знать:

  • Находить частоту события, используя собственный жизненный опыт и готовые статистические данные.

  • Находить вероятности случайных событий в простейших случаях.

  • Решать практико-ориентированные задачи, требующих перебора вариантов.

  • Уметь сравнивать шансы наступления случайных событий и оценивать вероятности их наступления в практических ситуациях.



Статистика

Среднее арифметическое, размах, мода – статистические характеристики.

Статистические характеристики:

  • Средним арифметическим ряда чисел называется частное от деления суммы этих чисел на их количество.

  • Модой обычно называют число ряда, которое встречается в этом ряду наиболее часто (Мо).

  • Размах – это разность наибольшего и наименьшего значений ряда данных.



Статистические характеристики:

Медианой упорядоченного ряда чисел с нечётным числом членов называется число, записанное посередине, а медианой упорядоченного ряда чисел с чётным числом членов называется среднее арифметическое двух чисел, записанных посередине.

Задача:

Проведя учёт числа животноводческих ферм в 15 хозяйствах района, получили следующий ряд данных:

1, 2, 2, 3, 4, 2, 3, 1, 4, 5, 3, 3, 2, 1, 2.

Найдите для этого ряда среднее арифметическое, размах, моду и медиану.
  • Среднее арифметическое

  • Мода

  • Размах

Упорядочим данные:

1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5
  • Медиана Ме=2



Элементы комбинаторики:

  • Правило суммы.

  • Правило произведения.

  • Перебор возможных вариантов.

  • Схема- дерево возможных вариантов.

  • Формулы комбинаторики.



Правило суммы:

Если элемент А может быть выбран m способами, а элемент B- n способами, причём выборы А и B являются взаимно исключающими, то выбор «либо А, либо B» может быть осуществлён m+n способами.

Задача

Сколько существует способов выбрать кратное 2 или 3 число из множества чисел: 2,3,4,15,16,20,21,75,28?

Решение

m=5 – кратное 2 (2,4,16,20,28),

n=4 –кратное 3 (3,15,21,75).

По правилу суммы находим :

m + n= 5+4=9 способов.

Ответ: 9 способов.

Правило произведения (правило умножения)

Если элемент А может быть выбран m способами, а элемент B – n способами, то выбор «A и B» может быть осуществлён m*n способами.

Задача

На почте продаётся 40 разных конвертов и 25 различных марок. Сколько вариантов покупки конвертов с маркой можно осуществить?

Решение

Конверт можно выбрать 40 способами, марку – 25 способами. По правилу произведения покупку можно осуществить 40*25= 1000 способами.

Ответ: 1000 способов.

Перебор возможных вариантов

Сколько трехзначных чисел можно составить из цифр 1, 3, 5, 7, используя в записи числа каждую из них не более одного раза?

Ответ: 24 числа

Схема– дерево возможных вариантов



Факториал

Произведение натуральных чисел от 1 до n в математике называют факториалом числа n и обозначают n! n! =1* 2* 3* 4*… *n

Например :

5! = 1* 2* 3* 4* 5=120

Перестановки

Перестановкой из n элементов называется комбинация, в которой все эти n элементов расположены в определенном порядке.

Перестановки отличаются друг от друга только порядком расположения элементов.

n = 3

P=3!=1*2*3=6 P = n!



Размещения

Размещением из n элементов по k называется комбинация, в которой какие-то k из этих n элементов расположены в определенном порядке.

Размещения отличаются друг от друга не только порядком расположения элементов, но и тем, какие именно k элементов выбраны в комбинацию.

Задача на размещения



Сочетания

Сочетанием из n элементов по k называется комбинация, в которой из этих n элементов выбраны любые k без учета их порядка в комбинации.

Таким образом, для сочетания имеет значение только состав выбранных элементов, а не их порядок.

Задача на сочетания



Различие между перестановками, размещениями, сочетаниями

  • В случае перестановок берутся все элементы и изменяется только их местоположение.

  • В случае размещений берётся только часть элементов и важно расположение элементов друг относительно друга.

  • В случае сочетаний берётся только часть элементов и не имеет значения расположение элементов друг относительно друга.



Теория вероятности

Если опыт, в котором появляется событие А, имеет конечное число n равновозможных исходов, то вероятность события А равна

m–число благоприятных исходов,

n - число всех возможных исходов.

Задачи на теорию вероятностей

По статистике, на каждую 1000 лампочек приходится 3 бракованые. Какова вероятность купить исправную лампочку?

Решение

или 99,7 %.

Алгоритм нахождения вероятности события А

  • Определить, в чём состоит случайный эксперимент (опыт) и какие у него элементарные события (исход).

  • Найти общее число возможных исходов n.

  • Определить какие события благоприятствуют интересующему нас событию А и найти число m. События можно обозначать любой буквой.

  • Найти вероятность события А по формуле



Задачи открытого банка ЕГЭ



Задача №1

В чемпионате по гимнастике участвуют 50 спортсменок: 24 из США, 13 из Мексики, остальные — из Канады. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Канады.

Решение задачи №1

  • Благоприятное событие А: первой выступает спортсменка из Канады.

  • Количество всех событий группы: n=? Соответствует количеству всех гимнасток. n=50.

  • Количество благоприятных событий: m=? Соответствует количеству гимнасток из Канады. m=50-(24+13)=13.

  •  

Ответ: 0,26

Задача №2

В среднем из 1400 садовых насосов, поступивших в продажу, 14 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.

Решение задачи №2

  • Благоприятное событие А: выбранный насос не подтекает.

  • Количество всех событий группы: n=? Соответствует количеству всех насосов.n=1400.

  • Количество благоприятных событий: m=? Соответствует количеству исправных насосов m=1400-14=1386.

  •  

Ответ: 0,99

Задача №3

Фабрика выпускает сумки. В среднем на 190 качественных сумок приходится восемь сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых.

Решение задачи №3

  • Благоприятное событие А: купленная сумка оказалась качественной.

  • Количество всех событий группы: n=? Соответствует количеству всех сумок. n=190+8 .

  • Количество благоприятных событий: m=? Соответствует количеству качественных сумок.m=190.

  •   Ответ:0,96



Задача №4

В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 7 очков. Результат округлите до сотых.

Решение задачи №4

  • Опыт: выпадают три игральные кости.

  • Благоприятное событие А: в сумме выпало 7 очков.

  • Количество всех событий группы n=?

1-я кость - 6 вариантов

2-я кость - 6 вариантов n=6*6*6=216

3-я кость - 6 вариантов
  • Количество благоприятных событий m=?

331 223 511 412 142

313 232 151 421 214 m=18

133 322 115 124 241 Ответ: 0,08

Задача №5

В случайном эксперименте симметричную монету бросают четырежды. Найдите вероятность того, что орел не выпадет ни разу.

Решение задачи №5

  • Условие можно трактовать так: какова вероятность того, что все четыре раза выпадет решка?

  • Количество всех событий группы n=?

1-й раз - 2 варианта

2-й раз - 2 варианта n=2*2*2*2=16

3-й раз - 2 варианта

4-й раз - 2 варианта
  • Количество благоприятных событий m=? m=1.

Четыре раза выпала решка.

Ответ: 0,0625

Задача №6

В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что сумма выпавших очков равна 6. Ответ округлите до сотых.

Решение задачи №6

Результат каждого бросания – это пара чисел (a, b), где a и b – числа от 1 до 6. Поэтому все поле событий состоит из 6х6 = 36 элементов (п = 36 )

Задача №7

Люда дважды бросает игральный кубик. В сумме у неё выпало 9 очков. Найдите вероятность того, что при одном из бросков выпало 5 очков.

Решение задачи №7



Задача №8

Наташа и Вика играют в кости. Они бросают игральную кость по одному разу. Выигрывает тот, кто выбросил больше очков. Если очков выпало поровну, то наступает ничья. В сумме выпало 8 очков. Найдите вероятность того, что Наташа выиграла.

Решение задачи №8



Задача №9

Миша трижды бросает игральный кубик. Какова вероятность того, что все три раза выпадут чётные числа?

Решение задачи №9

  • У Миши равновозможных исходов –

6 · 6 · 6 = 216
  • Благоприятствующих проигрышу исходов –

3 · 3·3 = 27
  • Вероятность события

р = 27/216 = 1/8 = 0,125

Ответ:0,125.



Задача №10

В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 16 очков. Результат округлите до сотых

Решение задачи №10



Задачи открытого банка ГИА



Задача №1

В урне лежат одинаковые шары : 5 белых, 3 красных и 2 зелёных. Саша вынимает один шар. Найдите вероятность того, что он окажется зелёным.

Решение

Всего в урне лежит 5+3+2=10 шаров, из них 2 – зелёных. Вероятность того, что вынутый шар окажется зелёным, равна 2:10=0,2.

Ответ: 0,2

Задача №2

В копилке находятся монеты достоинством 2 рубля – 14 штук, 5 рублей – 10 штук и 10 рублей – 6 штук. Какова вероятность того, что первая монета, выпавшая из копилки, будет достоинством 10 рублей?

Решение

Всего в копилке 14+10+6=30 монет, из них 6 штук – десятирублевых. Вероятность того, что первая монета, выпавшая из копилки, будет достоинством 10 рублей, равна 6:30=1:5=0,2.

Ответ: 0,2

Задача №3

Подбрасывают две монеты. Какова вероятность того, что все монеты упадут орлом вверх?

Решение

Рассмотрим полную группу событий. ♦ первая монета упала орлом (о), вторая — решкой (р); ♦ обе монеты упали орлом; ♦ первая монета упала решкой, вторая — орлом; ♦ обе монеты упали решкой. Мы перечислили все возможные исходы опыта, их всего – 4. Нас интересуют те исходы опыта, когда обе монеты упали орлом. Такой случай всего один. Стало быть,

N = 1. Итак, вероятность выпадения двух орлов: Р = 1/4.

Ответ: 0,25



Задача №4

Подбрасывают две монеты. Какова вероятность того, что ровно одна монета упадёт орлом вверх?

Решение

Рассмотрим полную группу событий. ♦ первая монета упала орлом (о), вторая — решкой (р); ♦ обе монеты упали орлом; ♦ первая монета упала решкой, вторая — орлом; ♦ обе монеты упали решкой. Мы перечислили все возможные исходы опыта, их всего – 4. Нас интересуют те исходы опыта, когда одна их монет упала орлом. Вверх. Таких случаев два. Стало быть, N = 2. Итак, вероятность выпадения «орла»:

Р = 2/4=1/2

Ответ: 0,5

Задача №5

Паша наудачу выбирает двузначное число. Найдите вероятность того, что оно оканчивается на 7.

Решение

Всего двузначных чисел – 90.

Двузначных чисел, оканчивающихся на 7: 17,27,37,47,57,67,77,87,97 – 9 чисел.

Вероятность того, что наугад выбранное двузначное число оканчивается на 7, равна: 9:90=0,1

Ответ: 0,1

Задача №6

На экзамене 45 билетов, Антон не успел выучить 18 из них. Найдите вероятность того, что ему попадётся выученный билет, если билет берётся наудачу.

Решение

Всего 45 билетов. Антон выучил 45-18=27 билетов. Вероятность того, что ему попадётся выученный билет, 27:45=0,6 равна.

Ответ: 0,6

Задача №7

На столе лежат 7 синих, 3 красных и 5 зелёных ручек. Найдите вероятность того, что наугад взятая ручка окажется красной.

Решение

Всего на столе 7+3+5=15 ручек, из 3 – красных. Вероятность того, что наугад взятая ручка окажется красной, равна 3:15=0,2.

Ответ: 0,2

Задача №8

В тестовом задании пять вариантов ответа, из которых только один верный. Какова вероятность правильно решить задание, если выбирать вариант наугад?

Решение

Если в тестовом задании только один из пяти ответов верный, то вероятность правильно решить задание , если выбирать вариант наугад, равна 1:5=0,2.

Ответ: 0,2.



Задача № 9

В мешке находятся 2 чёрных и 3 белых шара. Наугад вытаскивают два шара. Какова вероятность того, что вытащенные шары будут одного цвета?

Решение

Всего в мешке 5 шаров. Вероятность того, что вытащенные два шара будут одного цвета, равна 2:5=0,4.

Ответ: 0,4.

Задача №10

Из города А в город В можно добраться поездом, самолётом и на автомобиле. Из города В в город С можно добраться только поездом и самолётом. Пассажир выбирает для себя транспорт случайным образом. Какова вероятность того, что этот пассажир, добравшийся из города А в город В, воспользовался в обоих случаях самолётом?

Решение задачи №10

По правилу произведения получаем, что добраться из города А в город С через город В можно 3∙2=6 способами. Вероятность того, что пассажир, добравшийся из города А в город В, воспользовался в обоих случаях самолётом, равна 1:6.

Ответ: 1/6.

Спасибо за внимание! Удачи на ЕГЭ !!! Удачи на гиа !!!



Похожие:

Задача по данной теме относится к списку заданий, чтобы преодолеть минимальный порог, т е. минимальный тестовый балл для получения школьного аттестата iconМинимальный балл 2012 г. – Минимальный балл 2012 г
Таким образом, все разделы курса математики, будут представлены в ким егэ в соответствии с объемом их изучения в курсе средней школы,...
Задача по данной теме относится к списку заданий, чтобы преодолеть минимальный порог, т е. минимальный тестовый балл для получения школьного аттестата iconМинимальный балл 2012 г. 36 тестовых (17 первичных) баллов Минимальный балл 2012 г. 36 тестовых (17 первичных) баллов
Это лучше ориентирует на то, что нужны аргументы и по прочитанному, и основанные на знаниях и жизненном опыте Уточнены критерии оценки...
Задача по данной теме относится к списку заданий, чтобы преодолеть минимальный порог, т е. минимальный тестовый балл для получения школьного аттестата iconПоложение о стимулировании научной деятельности посредством материального вознаграждения за публикации в престижных международных изданиях ргп «каз нму им. С. Д. Асфендиярова» Абдуллаева Г. М
Минимальный размер заработной платы (мзп) определен на уровне 15 999 тенге, размер государственной базовой пенсионной выплаты 8 тысяч...
Задача по данной теме относится к списку заданий, чтобы преодолеть минимальный порог, т е. минимальный тестовый балл для получения школьного аттестата iconРусский язык Минимальный балл 2012 г. 36 тестовых (17 первичных) баллов Изменения 2012 г.: Изменен формат задания А2
Это лучше ориентирует на то, что нужны аргументы и по прочитанному, и основанные на знаниях и жизненном опыте Уточнены критерии оценки...
Задача по данной теме относится к списку заданий, чтобы преодолеть минимальный порог, т е. минимальный тестовый балл для получения школьного аттестата iconЕгэ – 2013 Молекулярная физика. Термодинамика. Правильный ответ: 3
Впервые в практике егэ рособрнадзор установил минимальное количество баллов по всем предметам за 9 месяцев до проведения егэ. Минимальный...
Задача по данной теме относится к списку заданий, чтобы преодолеть минимальный порог, т е. минимальный тестовый балл для получения школьного аттестата iconИсследовательская работа по теме: «Необычный способ получения синусоиды» Выполнили ученицы 10 а класса: Мирьякупова Алсу Кирамова Лилия
Предмет исследования – рассмотрение отдельных вопросов по данной теме. Таким образом, основной целью написания работы является: рассмотрение...
Задача по данной теме относится к списку заданий, чтобы преодолеть минимальный порог, т е. минимальный тестовый балл для получения школьного аттестата iconКонстатирующее оценивание на уроке английского языка по теме «Films» 8 класс
Учащиеся получают наивысший балл 10, если они верно выполнили 100% (10) заданий
Задача по данной теме относится к списку заданий, чтобы преодолеть минимальный порог, т е. минимальный тестовый балл для получения школьного аттестата iconАналитический отчёт фипи: «…Минимальный процент выполнения приходится на те задания, где имеется дистантное расположение союзного слова который…»

Задача по данной теме относится к списку заданий, чтобы преодолеть минимальный порог, т е. минимальный тестовый балл для получения школьного аттестата iconМинимальный размер оплаты труда
Фгуп «Научно-исследовательский институт труда и социального страхования» Минздравсоцразвития России
Задача по данной теме относится к списку заданий, чтобы преодолеть минимальный порог, т е. минимальный тестовый балл для получения школьного аттестата iconВерно ли утверждение
Сечение головки газового вентиля имеет форму правильного треугольника, сторона которого равна 3 см. Каким должен быть минимальный...
Разместите кнопку на своём сайте:
dok.opredelim.com


База данных защищена авторским правом ©dok.opredelim.com 2015
обратиться к администрации
dok.opredelim.com
Главная страница